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An Investigation of Ability Estimation in
Gibbs Sampling

Abstract

The ability estimates of Gibbs sampling and the magnitudes of the posterior standard

deviations were investigated. Item parameters of the Q-E intelligence test were obtained

using Gibbs sampling, marginal Bayesian estimation, and BILOG. Two normal priors were

used in item parameter estimation. Ability estimates were obtained using Gibbs sampling,

that is, jointly with item parameter estimates, and compared with estimates from the

expected a posteriori method employing item parameter estimates obtained from Gibbs

sampling, marginal Bayesian estimation, and BILOG. Item parameter estimates were very

similar as were ability estimates but the patterns of the magnitudes of the posterior standard

deviations of ability estimates from Gibbs sampling were different from those based on the

expected a posteriori method.

Keywords: Bayesian inference, expected a posteriori, Gibbs sampling, item response theory,

marginal Bayesian.
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Introduction

Gibbs sampling is a member of a class of Markov Chain Monte Carlo (MCMC) methods

that can be used for estimation of item and ability parameters in various item response

theory (IRT) models. The advantages of Gibbs sampling include incorporation of standard

errors of item parameter estimates into inferences of ability and an estimation process that

remains straightforward even as model complexity increases (Patz & Junker, 1999). Although

previous studies suggested Gibbs sampling could be a viable method in IRT, comparisons

with existing estimation methods have only just begun to be presented, and characteristics

of item and ability parameter estimates in Gibbs sampling are not well known. The purpose

of this paper is to investigate ability estimation in Gibbs sampling under the two-parameter

normal ogive model. Results are compared to those obtained using the expected a posteriori

method.

For models with several parameters, statistical inference sometimes requires integration

over high-dimensional probability distributions in order to estimate any parameter of interest

or to obtain any particular function of the parameters. One such case is estimation of

item and ability parameters in IRT. Except for certain rather simple problems with highly

structured frameworks (e.g., an exponential family together with conjugate priors in the

Bayesian approach), the required integrations may be analytically nontractable. As is true for

many cases in statistics, the marginal density can be approximated using various techniques

(e.g., standard numerical integration, Laplacian approximation, Edgeworth expansion,

importance sampling, Metropolis algorithm; see Bernardo & Smith, 1994; Leonard & Hsu,

1999). The MCMC methods can be used to approximate the marginal density, and hence

can be used in estimation of IRT parameters.

A number of ways exist for implementing the MCMC method. [For a review, refer

to Bernardo and Smith (1994), Carlin and Louis (1996), and Gelman, Carlin, Stern, and

Rubin (1995).] Metropolis and Ulam (1949), Metropolis, Rosenbluth, Rosenbluth, Teller,

and Teller (1953), and Hasting (1970) present a general framework within which Gibbs

sampling (Geman & Geman, 1984) can be considered as a special case. Gelfand and Smith

(1990) discuss several different Monte Carlo-based approaches, including Gibbs sampling, for

calculating marginal densities. [See Gilks, Richardson, and Spiegelhalter (1996) for a recent

survey of applications.] Basically Gibbs sampling is applicable for obtaining parameter

estimates for the complicated joint posterior distribution in Bayesian estimation under IRT
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(e.g., Mislevy, 1986; Swaminathan & Gifford, 1985; Tsutakawa & Lin, 1986).

A few studies have examined the use of Gibbs sampling under IRT. Albert (1992)

applied Gibbs sampling to estimation of item parameters for the two-parameter normal ogive

model and compared the estimates with those obtained using marginal maximum likelihood

estimation. Baker (1998) investigated item parameter recovery characteristics of Albert's

Gibbs sampling procedure for item parameter estimation via a simulation study. Patz and

Junker (1999) developed a MCMC method based on the Metropolis-Hasting algorithm and

presented an illustration using the two-parameter logistic model. Patz and Junker (1999)

classified MCMC methods into several categories. In particular, Gibbs sampling of Albert

(1992) was classified as Gibbs sampling with data augmentation (see Tanner & Wong, 1987;

Tanner, 1996). Johnson and Albert (1999) presented a full Bayesian method of Gibbs

sampling that can be seen as a modification of Albert (1992). This paper considers Gibbs

sampling of Johnson and Albert (1999). Kim and Cohen (1999) investigated accuracy of

item and ability parameter estimation in Gibbs sampling under the two-parameter logistic

model.

MCMC computer programs in IRT have been developed largely only for specific

applications. For example, Albert (1992) and Johnson and Albert (1999) used computer

programs written in MATLAB (The Math Works, Inc., 1996). Baker (1998) developed

a specialized FORTRAN version of Albert's Gibbs sampling program to estimate item

parameters of the two-parameter normal ogive model. Patz and Junker (1997) developed an

S-PLUS code (Math Soft, Inc., 1995). Spiegelhalter, Thomas, Best, and Gilks (1997) have

also developed a general Gibbs sampling computer program BUGS for Bayesian estimation

which employs an adaptive rejection sampling algorithm (Gilks & Wild, 1992). Kim and

Cohen (1999) used BUGS. In this paper, Baker's (1998) program was extended to implement

the algorithm of Gibbs sampling in Johnson and Albert (1999).

The marginal maximum likelihood and marginal maximum a posteriori methods using the

expectation and maximization algorithm, as implemented in the computer program BILOG

(Mislevy & Bock, 1990), have become the standard estimation technique for obtaining IRT

item parameter estimates (see Bock & Aitkin, 1981; Bock & Lieberman, 1970; Mis levy,

1986). Ability parameters are estimated in the marginalized solutions using either maximum

likelihood, expected a posteriori, or maximum a posteriori estimation after obtaining the

item parameter estimates and assuming the estimates are true values. Patz and Junker
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(1999) indicated that these were based on the "divide and conquer" strategy because of the

sequential nature of the marginal estimation procedures.

In Gibbs sampling ability parameters can be estimated either jointly with item parameters

or sequentially after obtaining the item parameters. As Patz and Junker (1999) have

indicated, one of the advantages of the MCMC method is incorporation of standard errors of

item parameter estimates into inferences of ability. An issue to be examined in this study is

the incorporation of instability of item parameter in small samples on estimation of ability

parameters. All estimation methods should yield comparable item and ability parameter

estimates, when comparable priors are used with large samples. This study was designed to

investigate the comparability of item and ability parameter estimates for a small sample of

data, when different strategies are used for ability estimation using the two-parameter normal

ogive model. Specifically, Gibbs sampling of Johnson and Albert (1999) was examined and

compared with other estimation methods. The differences between Gibbs sampling and other

estimation methods are also discussed in the context of logic and underlying mathematics.

Background

Consider binary responses to a test with n items by each of N examinees. A response of

examinee i to item j is represented by a random variable Yii, where i = 1(1)N and j = 1(1)n.

The probability of a correct response of examinee i to item j is given by P(Yi; = 110i, = Pi;

and the probability of an incorrect response is given by P(Yi; = 010i, = 1 Pii = Qij,

where Oi is ability and s is the vector of item parameters.

Birnbaum (1968) and Lord (1980) describe the estimation of the 0 and by joint

maximization of the likelihood function
N n

p(Y19, = H H P;(0i) Q;(001-9ii = 1(0, IY), (1)
i=1

where Y is an N x n matrix of observed responses, yii, 0 = (Oh , ON)1 = {Oi}, and

7-= Cir. In joint maximum likelihood estimation (see Lord, 1986 for a comparison

of marginalized and joint estimation methods), the item parameter estimation part for

maximizing /(IY, and the ability parameter estimation part for maximizing /(0IY, ) are

iterated until a stable set of maximum likelihood estimates of item and ability parameters

are obtained.

Extending the idea of joint maximization, Swaminathan and Gifford (1982, 1985, 1986)

suggested that 0 and can be estimated by joint maximization with respect to the

4
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parameters of the posterior density

p(0, 1-Y) = PCY164' 613(8' cx /(0, IY)p(O, (2)
Y)

where p(0,) is the prior joint density of the item and ability parameters. This procedure is

joint Bayesian estimation. Under the assumption that priors of 0 and are independently

distributed with probability density functions p(0) and p(6, the item parameter estimation

part maximizing l(. Y, and the ability parameter estimation part maximizing

1(0IY ,)p(0) are iterated to obtain stable Bayes modal estimates of item and ability

parameters.

The main feature of MCMC methods is that of obtaining a sample of parameter values

from the posterior density (Tanner, 1996). The sample of parameter values then can be used

to estimate some functions or moments (e.g., mean and variance) of the posterior density of

the parameter of interest. In the usual IRT estimation procedures, however, the task is to

obtain modes of either a likelihood function or a posterior distribution.

The Gibbs sampling algorithm proceeds as follows (Gelfand & Smith, 1990; Tanner,

1996). First, instead of using 0 and let w be a vector of parameters with k elements.

Suppose that the full or complete conditional distributions, p(wilwl,Y), where i, j = 1(1)k

and j i, are available for sampling. That is, samples may be generated by some method

given values of the appropriate conditioning random variables. Then given an arbitrary set

of starting values. A°) , (4), the algorithm proceeds as follows:

Draw c4.,1) from p(wi jc,4°), , 4), Y),
Draw 4.,.41) p(w2ico1), jo), jko),

Draw wk(1) from P(cok Iwil), , co;c121, Y),

Draw wit) from P(coilc441) , , wic1) ,Y),

Draw co?) from p(w2icj2), (4.41), W(k1), Y),

Draw 2) from ( (2)
(2)

rom p , ,Wk-1)

(.4).t+1) (t) (t)
Draw P(wilw2 , , Y),

(t+1) (t) (t)
Draw (44'4-1) from 130-/21(,)]. ,CO3 , , 1,

(t+1)
u-qc

(t+1) (1) v.\
1Draw Pk , ,Wkt+-1 1,

5
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The vectors co(°), , w(t),.... are a realization of a Markov chain with a transition

probability from w(t) to c.o(t+1) given by

p(co(t) co(t+1)) Hp(wri)pv, (it+1),
(3)

t=_-1

The joint distribution of w(t) converges geometrically to the posterior distribution pp IY)

as t oo (Geman & Geman, 1984, Bernardo & Smith, 1994). In particular, wit) tends to

be distributed as a random quantity whose density is p(wilY). Now suppose that there exist

m replications of the t iterations. For large t, the replicates c4), , (.4) are approximately

a random sample from p(wilY). If we make n2 reasonably large, then an estimate, 15(wilY),

can be obtained either as a kernel density estimate derived from the replicates or as

in1
15(wiiY) =

(

) i,Y) (4)
m,

In the context of IRT, Gibbs sampling attempts to sample sets of parameters from the

joint posterior density p(0,IY). Inferences with regard to parameters can then be made

using the sampled parameters. Note that inference for both 0 and can be made from the

Gibbs sampling procedure.

Gibbs Sampling with Data Augmentation

Albert (1992) and Johnson and Albert (1999) presented programs for the Gibbs sampling

procedure using the matrix language MATLAB (e.g., The MathWorks, Inc., 1996). The

two-parameter normal ogive model was used for the item response function. The probit,

without the addition of 5 (see Finney, 1971; i.e., the normal equivalent deviate), was given

by

Zip= a3Bi , (5)

where aj is the item discrimination parameter, and bj is the negative intercept parameter

for item j, that is = (a3, bi) . Using the usual item response theory parameterization, we

have

Zij = ajOi bj= AA+ (j = aj(0i i3j), (6)
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where aj = Aj = aj is the slope parameter, (3 is the intercept parameter, and /3 is the

item difficulty or threshold parameter (see Baker, 1992, p. 7, p. 26). Note that under the

two-parameter logistic item response theory model,

Zip = CVjD(Oi 13j), (7)

where D = 1.7 is the scaling factor (e.g., Mislevy & Bock, 1990).

Let Z = {Z23} be the matrix of independent random probits, that represents the matrix

of the augmented data (Patz & Junker, 1999). A Gibbs sampling procedure can be used to

sample from the joint posterior distribution over the entire collection of unknown parameters

and latent data. The sampler is based on iteratively drawing values from three sets of

conditional probability distributions, p(ZIO, Y), p(01Z, Y), and p(1Z, 0, Y) (Johnson

& Albert, 1999).

To implement the Gibbs sampler, suppose at iteration (t 1) the current values of

{Zip -1) },
{0?-1) f (t-1)

the model parameters are denoted by and fb(t-1)}. Then onerh3 3

complete cycle of the Gibbs sampler can be described as follows:

First, values of the latent data {4(2} are simulated conditional on the current values of

the latent traits and item parameters and on the item response data. In other words, Zip

is randomly sampled from p(Z(t)10(t-1), et-1). Y). The conditional posterior distribution of

Zip is a truncated normal distribution with mean

(t-1)a . bct-1)
J

(8)

and variance 1. The truncation of the posterior distribution depends on the value of the

corresponding observation yid. If yid = 1, the truncation of Zij is from the left at 0 and Zip

is sampled from the part of the conditional posterior distribution above 0. If yid = 0, the

truncation of is from the right at 0 and Z23 is sampled from the part below 0. Let the new

latent data value simulated from this truncated normal distribution be denoted by {Z.2}.

Second, latent traits Nt)) are simulated from their posterior distribution conditional on

current values of the latent data and item parameters, where the posterior can be denoted
by p(o(t)iz(t) et- Y ) Using the latent data representation, the item response model can

be written as

43) a3(t -1)0i (9)

where the error term eij are independent normal with mean 0 and variance 1. For a given

value of i, this is a special case of the linear regression model with unknown parameter Oi.
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The likelihood function for Bi is of the normal form with mean

n(t-1) 7(t.) bit -1))
(./.1

j=1
J . (aCt-0)2

k 3
j=1

and variance

(10)

2 1

at9 = (11)
t,h ,()\2

j=1

Combining the sampling model with the N(po, r) prior, it follows that the conditional

posterior density of Oi is normally distributed with mean

me i
6i /met + pe /1 (12)
1/4 + 1/4

and variance
1

ve, = (13)

'Let le} denote the vector of latent traits randomly drawn from the conditional posterior

density. Specifically,

e) = RF)e, + me, (14)

R is a random Gaussian deviate (Press, Teukolsky, Vetterling, & Flannery, 1992, p.

280).

Third, the item parameters {a3, b3} are simulated from their joint posterior density,

priz(t) OM, Y),) conditionally on the current values of the latent data and the latent

traits. To determine the conditional distribution, the latent data model can be written as

4.:)= aie) bi + eii. (15)

Since the values of the latent data {431 and the latent traits {el are fixed, the model

can be seen as a linear regression model with unknown parameters ai and ki for a fixed value

of j. Using matrix notations, the model can be written as

Zj = X ci

8 0

(16)



Zg)
where zi = , the design matrix X =

)Z(t_ _

Let /Le denote the prior mean vector

Sj =
a3

bj
, and ei =

(t)
flj

(t)
2j

(t)
E/j

e) --1

eP -1

et) -1

and let Ee denote the prior covariance matrix

,2

[ 111,tab

0
20

(17)

(18)

It follows that the conditional posterior density of j is multivariate normal with mean vector

mi = (XiX + Ee1)1 (X1Z3 Eit0

and covariance matrix

Vi = (XiX + .

The Cholesky decomposition of V3 is performed and let

A = chol(V3) = chol (X' X +

Two random normal deviates R1 and R2 are generated and the item parameter values for

item j are given by

(3t) = r R1 1 + m3.
L R2

(22)

According to Johnson and Albert (1999), given suitable starting values for the parameter

values, these steps define one cycle in Gibbs sampling scheme that can be used to obtain

samples from the posterior distribution over all model parameters. Convergence of the

algorithm is typically obtained within several hundred observations and is usually not very

sensitive to the choice of starting values.

Analyses of the Q-E Intelligence Test Data

Data

The data for this example are from the administration of the ten-item Q-E intelligence

test (Fraenkel & Wallen, 2000, p. 181) to 44 examinees. Although there are 1,024 possible

9 11



response patterns for this ten-item test, only 37 patterns occurred in this sample. Examinees

8 and 9, 10 and 11, 33 and 34, 40 to 44, respectively, had the same response patterns. The

data are given in Table 1.

Insert Table 1 about here

Gibbs Sampling

Gibbs sampling typically employs the following four basic steps (cf. Kim & Cohen, 1999):

1. Full conditional distributions and sampling methods for unobserved parameters must

be specified.

2. Starting values must be provided.

3. Output must be monitored.

4. Summary statistics (e.g., estimates and standard errors) for quantities of interest must

be calculated.

A discussion of the four steps involved is briefly presented below using the Q-E intelligence

test data.

To complete the specification of a full probability model, prior distributions of the

parameters (i.e., 0 a3, and b3) need to be specified. Following Albert (1992) and Johnson

and Albert (1999), the prior distribution of ability was specified as normal with mean 0

and variance 1, p(03) = N(0, 1). Priors for item parameters can be specified in several

different ways. For example, we can impose priors directly on a3 and b3 or hierarchically

using additional hyperparameters (e.g., Swaminathan & Gifford, 1985; Kim, Cohen, Baker,

Subkoviak, & Leonard, 1994). Uninformative priors can be imposed, if it is preferred that

the priors not be too influential. Alternatively, it may also be useful to include external

information in the form of fairly informative prior distributions. For this study, two prior

distributions were chosen for the item parameters: (1) ai N(1, 1) and b1 ti N(0, 1), and

(2) ai N(1, .52) and 1)3 Ps, N(0, 22). Two rather informative prior distributions were chosen

for the item parameters due to the small sample size (see Harwell & Janosky, 1991).

The choice of starting values is not generally that critical as the Gibbs sampler should

be run long enough to be sufficiently updated from its initial states. Good initial values

10
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certainly do not hurt (Johnson & Albert, 1999). Starting values suggested in Johnson and

Albert (1999) were used in Gibbs sampling. In their strategy, the initial values of 0, are

set to 0 which is the value of their prior mean. The initial values of all item discrimination

parameters are set to ,ua in accordance with their prior means. For both prior conditions

= 0 in this study. Using the initial values of the discrimination parameters {a3}, the

negative item intercept parameters { } can be initialized by solving for bi in the equation,

bj
=

+

In other words, the initial values of bi are set to be

(23)

= + /4, 03 ,
(24)

where c1)-10 denotes that standard normal quantile function and /3 denotes the proportion

of individuals responding correctly to item j defined as

N

E yi, +.5
2=1

N +1
(25)

A critical issue in Gibbs sampling is how to determine when one can safely stop sampling

and use the results to estimate characteristics of the distributions of the parameters of

interest. The values for the unknown quantities generated by the Gibbs sampler can be

graphically and statistically summarized to check convergence (see Best, Cowles, & Vines,

1997; Johnson & Albert, 1999). Following Albert (1992) and Baker (1998), the sampled

values of ce (i.e., 0 and were recorded at the 10th cycle of the Gibbs sampler, and at

every 5th cycle thereafter. A total of 10,000 recorded sample values were used to obtain the

density estimates for the ability and item parameters.

The posterior mean of the Gibbs sampler was obtained for each parameter using the

10,000 sampled values. In addition, the 95% posterior interval and the posterior standard

deviation were obtained for each parameter using the sampled values. Each 95% posterior

interval was not obtained from the normal approximation using the posterior standard

deviation. Rather, the posterior interval was obtained from the ordered 10,000 sampled

values.

11
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Marginal Estimation Methods

For comparison purposes, estimates from the two marginalized methods, denoted as marginal

Bayesian estimation and BILOG, were obtained. In marginal Bayesian estimation, the

marginalized posterior distribution,

P(CY) = f P(9, CY)P(0)dO (26)

was maximized to obtain item parameter estimates under the normal ogive model (Bock

& Aitkin, 1981; Bock & Lieberman, 1970; Kim, 1994). The same priors were employed

as in Gibbs sampling. After obtaining the item parameter estimates, expected a posteriori

estimation (Bock & Mislevy, 1982) was used to obtain ability parameter estimates in marginal

Bayesian estimation. The computer program BILOG (Mislevy & Bock, 1990) was also used

to obtain item and ability parameter estimates for the Q-E intelligence test. For the BILOG

runs, two different item priors were used: (1) p(log a3) = N(0, 1) and p(b3) = N(0, 1), and

(2) p(log a3) = N(0, .52) and p(b3) = N(0, 22). Otherwise, default options were used in

the BILOG runs. Expected a posteriori estimation was used to obtain ability parameter

estimates. A standard normal prior was used for ability.

For the marginal Bayesian estimation, the standard errors (i.e., posterior variances) of

the item parameter estimates were not obtained by inverting the empirical information

matrix in the Fisher-scoring solution. Instead the block-diagonal approximation to the

information matrix was used. This implementation may underestimate the large-sample

posterior standard deviations. The model analyzed in the BILOG runs was the two-

parameter logistic model with D = 1.7.

Results

Item parameter estimates from Gibbs sampling are presented in Table 2 for the prior-1

and prior-2 conditions (see also Figure 1). In addition, the 95% posterior intervals and the

approximated values of the posterior standard deviation are also presented in Table 2. For

the approximation, each 95% posterior interval was divided by 3.92, but for brevity it is

denoted as PI/4.

Insert Table 2 and Figure 1 about here
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The prior -1 condition employed two normal priors, p(ai) = N(1,1) and p(bb) = N(0,1).

The prior-2 condition also employed two normal, but slightly different, priors from the prior-

1 condition, p(a1) = N(1, .52) and p(bi) = N(0, 22). Because the prior variance of a3 in the

prior-2 condition was smaller than that of the prior-1 condition, the shrinkage of 'di toward

the prior mean was greater for the prior-2 condition. In addition, the 95% posterior intervals

of 'di were narrower for the prior-2 condition. This pattern can also be seen in the PI/ 4

values. The prior variance of b, was smaller in the prior-1 condition. Consequently, the

shrinkage of b3 toward the prior mean was greater for the items with large estimates and the

95% posterior intervals of b3 were generally narrower for the prior-1 condition than for the

prior-2.

The posterior standard deviations of the sampled values of Gibbs sampling are reported

in Table 3 for the prior-1 and prior-2 conditions. The 95% posterior intervals can be

calculated from the posterior standard deviations. Table 4 contains the normal approximated

95% posterior intervals. In essence the posterior standard deviations and the normal

approximated 95% posterior intervals have the same information with regard to the

uncertainty of parameter estimates. Note that the estimates eti and 63 of Gibbs sampling

are the same for both Tables 2 and 3. When the PI/4 values and the posterior standard

deviations are compared in Gibbs sampling, it can be seen in Table 3 that the magnitudes

of the PI/4 values were uniformly smaller than those of the posterior standard deviations in

Table 4. Hence, the posterior intervals of the sampled parameters were consistently narrower

than those from the normal approximation.

Insert Tables 3 and 4 about here

Item parameter estimates from the marginal Bayesian estimation and the computer

program BILOG are reported in Table 3 for both prior-1 and prior-2 conditions. Before

comparing the item parameter estimates, it should be noted that the priors used in the

BILOG runs were different from those used in Gibbs sampling and marginal Bayesian

estimation. The priors used in BILOG were on the log item discrimination parameter and

directly on the item difficulty parameter. The prior-1 condition ofBILOG used p(log ai) =

N(0,1) and p([33) = N(0,1). The prior-2 condition of BILOG used p(log 0/3) = N(0, .52)

and p(i33) = N(0, 22). If we consider only the first two moments of the distribution for



log a3 N(p, o-2), the expected value and the variance of oti are defined as

E(ozi) = exp
Cµ

+ (27)

and

Var(ai) = exp(2A + a2)[exp(a2) 1] (28)

(Hogg & Craig, 1978). For example, the specification p(log ai) = N(0, 1) yields E(a3) =

exp(.5) = 1.649 and \Tar(%) = exp(1)[exp(1) 1] = 4.671; the specification p(log (xi) =

N(0, .52) yields E(a3) = 1.133 and Var(oei) = .365. These specifications are not the same as

the prior specifications used in Gibbs sampling and marginal Bayesian estimation. Moreover,

if p(ai) = N(pi, a) and p(/33) = N(112, u3), then b3 = a3113 and will be distributed as normal

with mean

and variance

gbi =

2 2 2 2 2
(lb.? = (Y1(72 itla2 + P20-1

(29)

(30)

(Hogg & Craig, 1978). For the prior-1 condition p(a3) = N(1, 1) and p(b3) = N(0, 1), and

consequently p()33) = N(0, '4-2) = N(0, .7072). The specifications in the prior-2 condition,

p(ai) = N(1, .52) and p(b3) = N(0, 22), yield p([33) = N(0, = N(0, 1.7892). Again,

it should be noted that the default priors used in BILOG were slightly different from those

used in Gibbs sampling and in marginal Bayesian estimation.

The values of eti from the marginal Bayesian estimation were consistently smaller than

the corresponding values from Gibbs sampling for both prior conditions (see Table 3 and

Figure 1). The values of b; from the marginal Bayesian estimation were uniformly larger and

shifted in a positive direction than the corresponding values from Gibbs sampling for both

prior conditions. Prior-2 yielded a narrow range for et; due to the shrinkage effect.

The general patterns of the item parameter estimates of BILOG were very similar to

those of Gibbs sampling. As was the case for both Gibbs sampling and marginal Bayesian

estimation, the prior-2 condition yielded etj that had shrunken closer to the prior mean than

did the prior-1 condition. The values of a3 were very similar but those which had smaller

hi in Gibbs sampling became somewhat inflated in BILOG for both prior conditions. As

was the case for marginal Bayesian estimation, the values of from BILOG were shifted to

the positive direction when compared to the corresponding values from Gibbs sampling (see

Table 2 and Figure 1).
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The posterior intervals (as well as PI/4) and the posterior standard deviations can also be

used to compare different estimation procedures. There are two ways we obtain the posterior

intervals for Gibbs sampling. One way is to use the actual sampled parameter values and

the other way is to use the posterior standard deviations to construct the interval using such

an equation, for example, as aj ± 1.96 x PSD. The two sets of the 95% posterior intervals of

Gibbs sampling were reported in Tables 2 and 4, respectively.

Figure 2 presents the magnitudes of the PI/4 values and the posterior standard

deviations of item parameter estimates. The y-axis in Figure 2 contains either. PI/4

or posterior standard deviation. Marginal Bayesian estimation yielded smaller posterior

standard deviations whereas BILOG yielded larger posterior standard deviations than

did other estimation methods for both prior conditions. Item parameter estimates from

Gibbs sampling, marginal Bayesian estimation, and BILOG are different due to the prior

specification and the implementations of the estimation methods. Even so, the item

parameter estimates obtained from all estimation methods differed very little as did the

sizes of the posterior standard deviations and the PI/4 values.

Insert Figure 2 about here

The ability estimates of Gibbs sampling and the 95% posterior intervals are reported in

Table 5. Since the same standard normal distribution was used here in both priors for ability

estimation, the impact of prior on ability estimates could not be evaluated. Instead, any

differential effects were a function of the priors employed for item parameters. The prior-1

condition yielded generally higher ei than did the prior-2 condition except for some ability

estimates in the middle of the scale and except for those examinees who had a perfect score.

Overall, prior-1 yielded a slightly more shrunken scale than did the prior-2 condition.

Insert Table 5 about here

The 95% posterior intervals were wide and the corresponding PI/4 values large reflecting

the small number of items (i.e., only ten) used to obtain the ability estimates. The posterior

intervals and the PI/4 values show the estimation errors to be smaller when the ability

distribution was more closely matched to the difficulty level of the test. The extreme di

yielded relatively wide posterior intervals and consequently larger PI/4 values. The same Oi
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of Gibbs sampling are reported in Table 6 for the two prior conditions, but the posterior

standard deviations are reported instead of the 95% posterior intervals from the actual

sampled parameters. The normal approximated 95% posterior intervals from Gibbs sampling

are reported in Table 7 for comparison purposes. Table 6 contains the ability estimates of the

expected a posteriori method using item parameter estimates from Gibbs sampling, marginal

Bayesian estimation, and BILOG. All item parameters were assumed to be known in the

expected a posteriori method. Although all of these ability estimates were in fact expected

a posteriori estimates, we will use Gibbs sampling/EAP, marginal Bayesian estimation, and

BILOG in this discussion.

Insert Tables 6 and 7 about here

Figure 3 presents the relationship among the estimation procedures. The top six triangle

plots were from the prior-1 condition and the remaining bottom triangle plots were from the

prior-2 condition. The ability estimates of Gibbs sampling and Gibbs sampling/EAP were

similar for the prior-1 condition except in the middle of the ability scale. Marginal Bayesian

estimation and ,BILOG yielded similar but slightly larger positive ability estimates than did

Gibbs sampling. For the prior-2 condition, all estimation methods appeared to yield the

same ability estimates. Ability estimates were plotted on the 45 degree line for the prior-2

condition.

Insert Figure 3 about here

The posterior intervals are reported in Table 5 for Gibbs sampling and in Table 7 for Gibbs

sampling using the posterior standard deviations, Gibbs sampling/EAP, marginal Bayesian

estimation, and BILOG. The results of the posterior intervals can also be summarized in

terms of the PI/4 values and the posterior standard deviations as in Figure 4. The patterns

of the PI/4 values and the posterior standard deviations of Gibbs sampling, presented in the

top two rows, were different from those obtained using the expected a posteriori method. For

the Gibbs sampling, the PI/4 values were smaller than the corresponding posterior standard

deviations. Among the three expected a posteriori methods using the item parameter

estimates of Gibbs sampling, marginal Bayesian estimation, BILOG, respectively, Gibbs

sampling/EAP yielded smaller posterior standard deviations whereas marginal Bayesian
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estimation yielded larger posterior standard deviations of ability estimates. When the

expected a posteriori method was used to obtain ability estimates, a set of items with high

123 seem to reduce the sizes of the posterior standard deviations.

Insert Figure 4 about here

Discussion

Previous work using Gibbs sampling and MCMC suggests this method may provide a useful

alternative for estimation of IRT parameters when small sample sizes and small numbers

of items are used. Even though implementation of Gibbs sampling in IRT is available in

several computer programs, the accuracy of the resulting estimates has not been thoroughly

studied. The results of the analyses of the Q-E intelligence test presented in this study

indicate that item parameter and ability estimates were similar but the magnitudes of the

posterior standard deviations were different compared to estimates from the marginalized

methods studied.

The main difference in item parameter estimation between Gibbs sampling and the

marginalized Methods of marginal Bayesian estimation and BILOG, is in the way these

methods obtain the estimates. Gibbs sampling uses the sample of item parameter values to

estimate the mean and variance of the posterior density of the item parameter. Under either

the marginal Bayesian estimation or marginal maximum a posteriori estimation implemented

in BILOG, the marginalized posterior distribution is maximized to obtain the marginal

modes to be used as the item parameter estimates. Of course, estimation of the ability

parameters does not arise during the course of item parameter estimation under these

marginalized methods. Instead, ability parameters are typically estimated after obtaining

the item parameter estimates, under the assumption that the obtained estimates are true

values. In the Gibbs sampling approach, ability parameters can be estimated jointly with

item parameters or sequentially after obtaining item parameter estimates as seen in this

paper. In the latter case the obtained item parameter estimates were assumed to be the true

values. Comparisons of the two sets of ability estimates indicated that both estimates were

similar, but the forms as well as the sizes of the posterior standard deviations were different.

As indicated in Patz and Junker (1997), Gibbs sampling and general MCMC methods

are likely to be more useful for situations where complicated models are employed. Gibbs
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sampling in this paper was compared with marginalized methods for a two-parameter IRT

model. In addition, Patz and Junker (1999) suggest that one of the potential advantages

of using Gibbs sampling and other MCMC methods is incorporation of the uncertainty in

item parameter estimates into estimation of ability parameters. The analysis of the Q-

E intelligence test data suggests that Gibbs sampling, marginal Bayesian estimation, and

BILOG yield comparable item and ability estimates. For the item parameter estimates,

the magnitudes of the posterior standard deviations depend on the implementation of the

estimation. The sizes of the posterior standard deviations (or PI/4) of Gibbs sampling do

not seem to depend upon some items with deviant item discrimination estimates.

Although the results for the Q-E intelligence test presented above are informative, they

do not provide enough information with regard to comparative characteristics of item and

ability parameter estimates of Gibbs sampling. A standard method for examining such

characteristics is available, however, based on studies of parameter recovery employing

simulated data (e.g., Hu lin, Lissak, & Drasgow, 1982; Yen, 1983). What is needed at this

point, with respect to Gibbs sampling, is for more analysis with data simulated under various

sample size, test length, and test design conditions (e.g., broad range test, selection test) to

understand the comparative characteristics.

Finally, note that the examinees with the same response patterns may have different

ability estimates when the ability parameters are estimated jointly with item parameters

in Gibbs sampling. This is not acceptable in practice. The sequential estimation of ability

using previously obtained item parameter estimates from Gibbs sampling may remove such

oddity.
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Table 1
The Q-E Intelligence Test Data

Item
Examinee 1 2 3 4 5 6 7 8 9 10 Score

1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 1 1

3. 0 1 0 0 0 0 0 0 0 1 2

4 1 1 0 0 0 0 0 0 0 0 2

5 1 1 0 0 0 0 0 0 0 1 3

6 0 1 1 0 0 0 0 0 0 1 3

7 0 1 0 0 0 1 0 0 .0 1 3

8 1 1 0 0 0 0 1 0 0 0 3

9 1 1 0 0 0 0 1 0 0 0 3.
10 1 1 0 0 0 0 1 0 1 0 4

11 1 1 0 0 0 0 1 0 1 0 4

12 1 1 0 0 0 0 1 1 0 0 4

13 1 1 0 0 0 1 1 0 0 0 4

14 1 1 1 0 0 0 1 .0 0 1 5

15 1 1 1 0 0 0 1 0 1 0 5

16 1 1 0 0 1 0 0 1 1 0 5

17 0 1 1 1 0 1 1 0 0 0 5

18 1 1 1 0 0 0 1 1 0 1 6

19 1 1 0 1 0 0 1 0 1 1 6

20 1 1 1 1 0 0 0 1 0 1 6

21 1 1 1 0 0 0 1 1 1 0 6

22 1 1 0 0 1 0 1 1 1 0 6

23 1 1 1 0 1 0 1 1 0 0 6

24 1 1 1 1 0 1 1 0 0 0 6

25 1 1 0 1 0 1 1 1 0 0 6

26 0 1 0 1 1 1 1 1 0 0 6

27 1 1 1 0 0 0 1 1 1 1 7

28 1 1 1 0 1 0 1 0 1 1 7

29 1 1 1 1 0 0 1 1 0 1 7

30 1 1 0 0 1 1 1 -1 0 1 7

31 0 1 0 1 1 1 1 1 1 0 7

32 1 1 1 1 0 0 1 1 1 1 8

33 1 1 1 1 1 1 1 0 0 1 8

34 1 1 1 1 1 1 1 0 0 1 8

35 1 0 1 1 1 1 1 1 0 1 8

36 1 1 1 1 1 1 1 1 0 0 8

37 1 1 1 1 1 1 1 1 0 1 9

38 1 0 1 1 1 1 1 1 1 1 9

39 1 1 1 1 1 1 1 1 1 0 9

40 1 1 1 1 1 1 1 1 1 1 10

41 1 1 1 1 1 1 1 1 1 1 10

42 1 1 1 1 1 1 1 1 1 1 10

43 1 1 1 1 1 1 1 1 1 1 10

44 1 1 1 1 1 1 1 1 1 1 10
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Table 2
Estimated Item Parameters and 95% Posterior Intervals of the Q-E Intelligence Test Items

Gibbs Sampling

Item

Prior -1a Prior-2b

of (PI/4)c (Post. Interval) (PI/4) (Post. Interval) hj (PI/4) (Post. Interval) -63 (PI/4) (Post. Interval)

1 .729 (.297) (.201, 1.366) 1.042 (.229) (.617, 1.513) .829 (.265) (.351, 1.389) 1.167 (.258) (.688, 1.699)

2 .233 (.248) (-.237, .734) 1.316 (.220) (.895, 1.757) .395 (.231) (-.043, .862) 1.435 (.242) (.975, 1.923)

3 1.176 (.366) (.556, 1.990) .242 (.223) (-.185, .689) 1.112 (.275) (.616, 1.693) .280 (.235) (-.170, .753)

4 1.935 (.531) (1.038, 3.120) -.109 (.298) (- .703,.465) 1.444 (.317) (.876, 2.117) -.071 (.277) (-.616, .470)

5 1.872 (.503) (1.020, 2.992) -.304 (.285) (-.870, .248) 1.435 (.302) (.878, 2.063) -.255 (.272) (-.794, .273)

6 1.517 (.454) (.736, 2.515) -.155 (.246) (-.638, .326) 1.190 (.288) (.658, 1.788) -.123 (.236) (-.588, .338)

7 1.396 (.408) (.676, 2.277) 1.240 (.300) (.693, 1.869) 1.277 (.300) (.711, 1.887) 1.320 (.312) (.749, 1.971)

8 1.333 (.405) (.646, 2.232) .143 (.234) (-.319, .599) 1.171 (.290) (.640, 1.776) .176 (.238) (-.288, .643)

9 .633 (.244) (.186, 1.144) - -.267 (.183) (-.629, .088) .694 (.220) (.283, 1.144) -.266 (.193) (-.648, .109)

10 .360 (.214) (-.034, .805) .127 (.168) (-.200, .457) .441 (.198) (.072, .847) .147 (.178) (-.199, .499)

aPriors were p(ai)= N(1, 1) and p(bj)= N(0, 1).
bPriors were p(aj) = N(1, .52) and p(bi)= N(0,22).
`PI /4 = Posterior Interval/3.92
dThe values are = instead of bi.



Table 3
Estimated Item Parameters and Posterior Standard Deviations (PSDs) of the Q-E Intelligence Test Items

Item

Gibbs Sampling
Prior-1 Prior-2

ki (PSD) -63 (PSD) aj (PSD) -bi (PSD)
1 .729 (.355) 1.042 (.276) .829 (.316) 1.167 (.313)

2 .233 (.297) 1.316 (.265) .395 (.277) 1.435 (.294)

3 1.176 (.453) .242 (.268) 1.112 (.334) .280 (.282)

4 1.935 (.643) -.109 (.353) 1.444 (.376) -.071 (.328)

5 1.872 (.603) -.304 (.345) 1.435 (.364) -.255 (.325)

6 1.517 (.546) -.155 (.293) 1.190 (.342) -.123 (.280)

7 1.396 (.501) 1.240 (.364) 1.277 (.359) 1.320 (.376)

8 1.333 (.491) .143 (.278) 1.171 (.342) .176 (.282)

9 .633 (.294) -.267 (.217) .694 (.265) -.266 (.230)

10 .360 (.258) .127 (.201) .441 (.238) .147 (.212)

Item

Marginal Bayesian
Prior-1 Prior-2

cii (PSD) -bi (PSD) 'di (PSD) -bi (PSD)
1 .580 (.246) .938 (.235) .711 (.243) 1.028 (.255)

2 .186 (.243) 1.251 (.250) .333 (.236) 1.332 (.271)

3 .940 (.269) .127 (.212) .970 (.248) .149 (.217)

4 1.552 (.387) -.273 (.248) 1.318 (.292) -.222 (.237)

5 1.437 (.365) -.440 (.251) 1.299 (.292) -.403 (.243)

6 1.206 (.316) -.285 (.230) 1.083 (.262) -.252 (.226)

7 1.194 (.352) 1.091 (.293) 1.189 (.303) 1.168 (.300)

8 1.077 (.292) .035 (.218) 1.072 (.260) .056 (.221)

9 .503 (.208) -.305 (.200) .605 (.206) -.325 (.207)

10 .298 (.189) .085 (.190) .379 (.185) .091 (.194)

Item

BILOG
Prior -1 "a Prior -2 "b

aj (PSD) -ki (PSD) ai (PSD) --bi (PSD)
1 .645 (.338) .862 (.333) .809 (.295) 1.098 (.381)
2 .359 (.188) .885 (.2.54) .607 (.191) 1.460 (.370)
3 .968 (.466) .079 (.278) .984 (.373) .188 (.281)
4 1.856(1.301) -.405 (.541) 1.414 (.659) -.168 (.392)

5 1.525(1.023) -.531 (.461) 1.363 (.669) -.353 (.388)

6 1.265 (.588) -.387 (.363) 1.116 (A24) -.218 (.378)

7 1.333 (.797) 1.128 (.495) 1.300 (.601) 1.274 (.517)

8 1.122 (.533), -.014 (.293) 1.093 (.418) .114 (.300)
9 .534 (.259) -.302 (.223) .672 (.224) -.298 (.245)

10 .379 (.190) .048 (.206) .520 (.163) .099 (.241)
aPriors were p(log ai) = N(0, 1) and p(c3j) = N(0,1).
bPriors were p(log ck3) = N(0, .52) and p(0.7) = N(0,22).
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Table 4
Estimated Item Parameters and Normal-Approximated 95% Posterior Intervals of the Q-E Intelligence Test Items

Gibbs Sampling

Item
Prior-1 Prior-2

a, (Post. Interval) -bj (Post. Interval) (Post. Interval) -bi (Post. Interval)

1 .729 (.033, 1.425) 1.042 (.501, 1.583) .829 (.210, 1.448) 1.167 (.554, 1.780)

2 .233 (-.349, .815) 1.316 (.797, 1.835) .395 (-.148, .938) 1.435 (.859, 2.011)

3 1.176 (.288, 2.064) .242 (-.283, .767) 1.112 (.457, 1.767) .280 (-.273, .833)
4 1.935 (.675, 3.195) -.109 (-.801, .583) 1.444 (.707, 2.181) -.071 (-.714, .572)

5 1.872 (.690, 3.054) -.304 (-.980, .372) 1.435 (.722, 2.148) -.255 (-.892, .382)
6 1.517 (.447, 2.587) -.155 (-.729, .419) 1.190 (.520, 1.860) -.123 (-.672, .426)
7 1.396 (.414, 2.378) 1.240 (.527, 1.953) 1.277 (.573, 1.981) 1.320 (.583, 2.057)

8 1.333 (.371, 2.295) .143 (-.402, .688) 1.171 (.501, 1.841) .176 (-.377, .729)
9 .633 (.057, 1.209) -.267 (-.692, .158) .694 (.175, 1.213) -.266 (-.717, .185)

10 .360 (-.146, .866) .127 (-.267, .521) .441 (-.025, .907) .147 (-.269, .563)

Marginal Bayesian
Prior-1 Prior-2

Item (Post. Interval) -bj (Post. Interval) al (Post. Interval) -19j (Post. Interval)

1 .580 (.098, 1.062) .938 (.477, 1.399) .711 (.235, 1.187) 1.028 (.528, 1.528)

2 .186 (-.290, .662) 1.251 (.761, 1.741) .333 (-.130, .796) 1.332 (.801, 1.863)

3 .940 (.413, 1.467) .127 (-.289, .543) .970 (.484, 1.456) .149 (-.276, .574)
4 1.552 (.793, 2.311) -.273 (-.759, .213) 1.318 (.746, 1.890) -.222 (-.687, .243)
5 1.437 (.722, 2.152) -.440 (-.932, .052) 1.299 (.727, 1.871) -.403 (-.879, .073)
6 1.206 (.587, 1.825) -.285 (-.736, .166) 1.083 (.569, 1.597) -.252 (-.695, .191)
7 1.194 (.504, 1.884) 1.091 (.517, 1.665) 1.189 (.595, 1.783) 1.168 (.580, 1.756)

8 1.077 (.505, 1.649) .035 (-.392, .462) 1.072 (.562, 1.582) .056 (-.377, .489)
9 .503 (.095, .911) -.305 (-.697, .087) .605 (.201, 1.009) -.325 (-.731, .081)

10 .298 (-.072, .668) .085 (-.287, .457) .379 (.016, .742) .091 (-.289, .471)

BILOG
Prior-1* Prior-2*

Item (Post. Interval) -bj (Post. Interval) a3 (Post. Interval) -63 (Post. Interval)
1 .645 (-.017, 1.307) .862 (.209, 1.515) .809 (.231, 1.387) 1.098 (.351, 1.845)

2 .359 (-.009, .727) .885 (.387, 1.383) .607 (.233, .981) 1.460 (.735, 2.185)

3 .968 (.055, 1.881) .079 (-.466, .624) .984 (.253, 1.715) .188 (-.363, .739)
4 1.856 (-.694, 4.406) -.405 (-1.465, .655) 1.414 (.122, 2.706) -.168 (- .936,.600)
5 1.525 (-.480, 3.530) -.531 (-1.435, .373) 1.363 (.052, 2.674) -.353 (-1.113, .407)
6 1.265 (.113, 2.417) -.387 (-1.098, .324) 1.116 (.285, 1.947) -.218 (-.959, .523)
7 1.333 (-.229, 2.895) 1.128 (.158, 2.098) 1.300 (.122, 2.478) 1.274 (.261, 2.287)

8 1.122 (.077, 2.167) -.014 (-.588, .560) 1.093 (.274, 1.912) .114 (-.474, .702)
9 .534 (.026, 1.042) -.302 (-.739, .135) .672 (.233, 1.111) -.298 (-.778, .182)

10 .379 (.007, .751) .048 (-.356, .452) .520 (.201, .839) .099 (-.373, .571)
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Table 5
Ability Estimates and 95% Posterior. Intervals of the Q-E Intelligence Test

Examinee

Gibbs Sampling
Prior-1 Prior-2

9 (PI/4)a (Post. Interval) 0, (PI/4) (Post. Interval)
1 -1.815 (.528) (-2.946, -.875) -1.992 (.526) (-3.084, -1.024)
2 -1.570 (.521) (-2.688, -.646) -1.679 (.503) (-2.733, -.761)
3 -1.488 (.472) (-2.473, -.624) -1.512 (.455) (-2.442, -.658)
4 -1.265 (.438) (-2.181, -.466) -1.304 (.431) (-2.191, -.501)
5 -1.144 (.420) (-2.028, -.383) -1.153 (.416) (-2.005, -.376)
6 -.982 (.401) (-1.832, -.261) -1.042 (.398) (-1.866, -.304)
7 -.773 (.372) (-1.559, -.102) -.933 (.385) (-1.722, -.211)
8 -.813 (.378) (-1.604, -.123) -.874 (.394) (-1.674, -.129)
9 -.838 (.389) (-1.661, -.138) -.894 (.395) (-1.706, -.157)

10 -.645 (.361) (-1.389, .025) -.663 (.377) (-1.416, .063)
11 -.620 (.345) (-1.322, .031) -.640 (.366) (-1.365, .070)
12 -.476 (.340) (-1.179, .155) -.532 (.368) (-1.271, .173)
13 -.414 (.333) (-1.095, .211) -.506 (.363) (-1.234, .190)
14 -.437 (.330) (-1.108, .185) -.436 (.354) (-1.135, .254)
15 -.382 (.321) (-1.035, .222) -.373 (.346) (-1.061, .297)
16 -.241 (.307) (-.861, .342) -.309 (.340) (-.985, .348)
17 -.008 (.296) (-.586, .575) -.120 (.335) (-.775, .537)
18 -.175 (.310) (-.794, .423) -.150 (.345) (-.834, .519)
19 -.149 (.294) (-.745, .409) -.171 (.335) (-.827, .486)
20 -.105 (.297) (-.688, .476) -.149 (.332) (-.801, .502)
21 -.120 (.318) (-.748, .498) -.082 (.355) (-.773, .617)
22 .014 (.305) (-.587, .609) .006 (.346) (-.677, .679)
23 .090 (.303) (-.499, .687) .084 (.345) (-.594, .760)
24 .135 (.302) (-.445, .738) .098 (.340) (-.562, .771)
25 .156 (.303) (-.419, .768) .102 (.345) (-.567, .785)
26 .331 (.324) (-.276, .996) .198 (.355) (-.480, .913)
27 -.066 (.314) (-.678, .554) .009 (.350) (-.676, .695)
28 .031 (.298) (-.549, .620) .070 (.343) (-.603, .740)
29 .155 (.313) (-.450, .778) .180 (.358) (-.510, .893)
30 .205 (.301) (-.362, .816) .203 (.346) (-.452, .903)
31 .471 (.353) (-.194, 1.190) .372 (.374) (-.346, 1.119)
32 .274 (.310) (-.310, .904) .360 (.354) (-.312, 1.076)
33 .573 (.357) (-.070, 1.330) .568 (.385) (-.148, 1.361)
34 .574 (.363) (-.067, 1.354) .572 (.390) (-.135, 1.393)
35 .951 (.440) (.172, 1.898) .841 (.440) (.035, 1.759)
36 .888 (.408) (.141, 1.739) .841 (.428) (.038, 1.716)
37 1.048 (.439) (.254, 1.975) 1.038 (.450) (.205, 1.968)
38 1.173 (.479) (.330, 2.207) 1.090 (.473) (.229, 2.082)
39 1.214 (.493) (.354, 2.287) 1.196 (.492) (.305, 2.232)
40 1.430 (.531) (.492, 2.573) 1.466 (.527) (.512, 2.577)
41 1.421 (.546) (.468, 2.610) 1.462 (.5.50) (.470, 2.626)
42 1.376 (.512) (.471, 2.479) 1.426 (.522) (.486, 2.534)
43 1.365 (.499) (.475, 2.430) 1.407 (.501) (.486, 2.451)
44 1.341 (.484) (.472, 2.370) 1.399 (.500) (.486, 2.446)

`PI /4 = Posterior Interval/3.92
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Table 6
Ability Estimate., and Posterior Standard Deviations (PSD3) of the Q-E Intelligence Test

Examinee

Gibbs Sampling Gibbs Sampling/EAP Marginal Bayesian BILOG
Prior-1 Prior-2 Prior-1 Prior-2 Prior-1 Prior-2 Prior-10 Prior -2'

0; (PSD) 0; (PSD) 0; (PSD) 0; (PSD) 0; (PSD) 0; (PSD) 0; (PSD) 0; (PSD)
1 -1.815 (.633) -1.992 (.626) -1.823 (.607) -1.955 (.613) -1.801 (.631) -1.903 (.627) -1.789 (.627) -1.972 (.609)

2 -1.570 (.632) -1.679 (.603) -1.622 (.550) -1.705 (.539) -1.616 (.591) -1.674 (.572) -1.556 (.578) -1.674 (.549)

3 -1.488 (.563) -1.512 (.544) -1.504 (.529) -1.526 (.497) -1.506 (.576) -1.498 (.544) -1.364 (.546) -1.399 (.491)

4 -1.265 (.528) -1.304 (.517) -1.342 (.516) -1.376 (.485) -1.358 (.565) -1.344 (.532) -1.233 (.533) -1.283 (.482)

5 -1.144 (.507) -1.153 (.501) -1.180 (.524) -1.196 (.505) -1.202 (.558) -1.164 (.536) -1.054 (.519) -1.077 (.487)

6 -.982 (.481) -1.042 (.477) -.922 (.498) -1.032 (.503) -.988 (.521) -1.002 (.516) -.911 (.500) -1.006 (.487)

7 -.773 (.448) -.933 (.466) -.674 (.393) -.925 (.499) -.765 (.462) -.877 (.499) -.792 (.471) -.953 (.485)

8 -.813 (.452) -.874 (.469) -.747 (.441) -.841. (.484) -.782 (.480) -.799 (.486) -.677 (.428) -.773 (.456)

9 -.838 (.464) -.894 (.475) -.747 (.441) -.841 (.484) -.782 (.480) -.799 (.486) -.677 (.428) -.773 (.456)

10 -.645 (.432) -.663 (.449) -.588 (.317) -.615 (.367) -.615 (.403) -.593 (.399) -.537 (.359) -.574 (.375)

11 -.620 (.415) -.640 (.439) -.588 (.317) -.615 (.367) -.615 (.403) -.593 (.399) -.537 (.359) -.574 (.375)
12 -.476 (.408) -.532 (.439) -.495 (.208) -.520 (.296) -.473 (.346) -.475 (.359) -.421 (.335) -.484 (.338)

13 -.414 (.396) -.506 (.432) -.475 (.188) -.506 (.277) -.433 (.332) -.461 (.345) -.393 (.340) -.480 (.337)
14 -.437 (.391) -.436 (.423) -.486 (.213) -.471 (.291) -.449 (.356) -.422 (.373) -.377 (.346) -.406 (.337)

15 -.382 (.382) -.373 (.413) -.464 (.219) -.432 (.304) -.400 (.373) -.361 (.397) -.344 (.358) -.378 (.346)
16 -.241 (.367) -.309 (.407) -.422 (.244) -.423 (.263) -.327 (.375) -.336 (.372) -.261 (.396) -.340 (.361)
17 -.008 (.354) -.120 (.402) .001 (.485) -.201 (.444) .159 (.464) -.015 (.490) .244 (.389) -.090 (.449)
18 -.175 (.374) -.150 (.414) -.322 (.368) -.229 (.436) -.148 (.473) -.091 (.487) -.068 (.450) -.128 (.442)
19 -.149 (.350) -.171 (.401) -.304 (.380) -.270 (.410) -.119 (.476) -.126 (.477) .036 (.451) -.123 (.443)
20 -.105 (.356) -.149 (.398) -.252 (.415) -.263 (.411) -.070 (.483) -.116 (.476) .111 (.439) -.087 (.450)
21 -.120 (.377) -.082 (.420) -.251 (.417) -.142 (.468) -.060 (.488) .009 (.493) -.015 (.453) -.075 (.452)
22 .014 (.364) .006 (.412) .008 (.485) -.016 (.487) .143 (.468) .142 (.472) .171 (.421) .059 (.455)
23 .090 (.365) .084 (.413) .207 (.439) .146 (.467) .279 (.410) .262 (.431) .286 (.366) .165 (.435)
24 .135 (.360) .098 (.408) .275 (.401) .155 (.464) .341 (.373) .269 (.427) .377 (.308) .189 (.428)
25 .156 (.365) .102 (.411) .315 (.371) .176 (.457) .372 (.353) .300 (.413) .400 (.296) .222 (.418)
26 .331 (.391) .198 (.424) .460 (.203) .317 (.383) .509 (.304) .417 (.339) .531 (.322) .364 (.363)
27 -.066 (.375) .009 (.420) -.140 (.465) .020 (.487) .051 (.488) .149 (.472) .115 (.438) .108 (.448)
28 .031 (.356) .070 (.407) .078 (.479) .124 (.472) .191 (.452) .231 (.441) .235 (.394) .196 (.426)
29 .155 (.373) .180 (.423) .314 (.372) .284 (.408) .375 (.353) .367 (.382) .412 (.291) .326 (.377)
30 .205 (.362) .203 (.411) .372 (.315) .301 (.393) .401 (.324) .384 (.362) .407 (.293) .345 (.370)
31 .471 (.421) .372 (.449) .497 (.193) .441 (.287) .595 (.354) .522 (.327) .848 (.400) .507 (.361)
32 .274 (.372) .360 (.425) .416 (.259) .427 (.309) .462 (.302) .493 (.343) .488 (.297) .471 (.352)
33 .573 (.434) .568 (.465) .536 (.249) .552 (.326) .692 (.426) .662 (.421) .752 (.452) .648 (.424)
34 .574 (.438) .572 (.470) .536 (.249) .552 (.326) .692 (.426) .662 (.421) .752 (.452) .648 (.424)
35 .951 (.530) .841 (.530) .874 (.511) .775 (.476) 1.110 (.558) .957 (.535) 1.070 (.525) .822 (.491)
36 .888 (.493) .841 (.507) .851 (.503) .823 (.496) 1.079 (.556) .996 (.544) 1.060 (.524) .859 (.501)
37 1.048 (.528) 1.038 (.540) 1.022 (.555) 1.029 (.552) 1.237 (.570) 1.192 (.564) 1.244 (.544) 1.104 (.548)
38 1.173 (.570) 1.090 (.565) 1.202 (.588) 1.103 (.570) 1.376 (.583) 1.264 (.571) 1.334 (.556) 1.137 (.552)
39 1.214 (.596) 1.196 (.595) 1.174 (.586) 1.168 (.576) 1.344 (.583) 1.310 (.577) 1.324 (.555) 1.182 (.558)
40 1.430 (.636) 1.466 (.638) 1.394 (.620) 1.435 (.613) 1.520 (.606) 1.533 (.605) 1.535 (.595) 1.480 (.606)
41 1.421 (.651) 1.462 (.650) 1.394 (.620) 1.435 (.613) 1.520 (.606) 1.533 (.605) 1.535 (.595) 1.480 (.606)
42 1.376 (.615) 1.426 (.628) 1.394 (.620) 1.435 (.613) 1.520 (.606) 1.533 (.605) 1.535 (.595) 1.480 (.606)
43 1.365 (.602) 1.407 (.606) 1.394 (.620) 1.435 (.613) 1.520 (.606) 1.533 (.605) 1.535 (.595) 1.480 (.606)
44 1.341 (.583) 1.399 (.601) 1.394 (.620) 1.435 (.613) 1.520 (.606) 1.533 (.605) 1.535 (.595) 1.480 (.606)
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Table 7
Ability Estimates and Normal Approximated 95% Posterior Intervals of the Q-E Intelligence Test

Examinee

Gibbs Sampling Gibbs Sampling/EAP
Prior-1 Prior-2 Prior-1 Prior-2

of (Post. Interval) of (Post. Interval) of (Post. Interval) 6', (Post. Interval)
1 -1.815 (-3.056, -.574) -1.992 (-3.219, -.765) -1.823 (-3.013, -.633) -1.955 (-3.156, -.754)
2 -1.570 (-2.809, -.331) -1.679 (-2.861, -.497) -1.622 (-2.700, -.544) -1.705 (-2.761, -.649)
3 -1.488 (-2.591, -.385) -1.512 (-2.578, -.446) -1.504 (- 2.541; -.467) -1.526 (-2.500, -.552)
4 -1.265 (-2.300, -.230) -1.304 (-2.317, -.291) -1.342 (-2.353, -.331) -1.376 (-2.327, -.425)
5 -1.144 (-2.138, -.150) -1.153 (-2.135, -.171) -1.180 (-2.207, -.153) -1.196 (-2.186, -.206)
6 -.982 (-1.925, -.039) -1.042 (-1.977, -.107) -.922 (-1.898, .054) -1.032 (-2.018, -.046)
7 -.773 (-1.651, .105) -.933 (-1.846, -.020) -.674 (-1.444, .096) -.925 (-1.903, .053)
8 -.813 (-1.699, .073) -.874 (-1.793, .045) -.747 (-1.611, .117) -.841 (-1.790, .108)
9 -.838 (-1.747, .071) -.894 (-1.825, .037) -.747 (-1.611, .117) -.841 (-1.790, .108)

10 -.645 (-1.492, .202) -.663 (-1.543, .217) -.588 (-1.209, .033) -.615 (-1.334, .104)
11 -.620 (-1.433, .193) -.640 (-1.500, .220) -.588 (-1.209, .033) -.615 (-1.334, .104)
12 -.476 (-1.276, .324) -.532 (-1.392, .328) -.495 (-.903, -.087) -.520 (-1.100, .060)
13 -.414 (-1.190, .362) -.506 (-1.353, .341) -.475 (-.843, -.107) -.506 (-1.049, .037)
14 -.437 (-1.203, .329) -.436 (-1.265, .393) -.486 (-.903, -.069) -.471 (-1.041, .099)
15 -.382 (-1.131, .367) -.373 (-1.182, .436) -.464 (-.893, -.035) -.432 (-1.028, .164)
16 -.241 (-.960, .478) -.309 (-1.107, .489) -.422 (-.900, .056) -.423 (-.938, .092)
17 -.008 (-.702, .686) -.120 (-.908, .668) .001 (-.950, .952) -.201 (-1.071, .669)
18 -.175 (-.908, .558) -.150 (-.961, .661) -.322 (-1.043, .399) -.229 (-1.084, .626)
19. -.149 (-.835, .537) -.171 (-.957, .615) -.304 (-1.049, .441) -.270 (-1.074, .534)
20 -.105 (-.803, .593) -.149 (-.929, .631) -.252 (-1.065, .561) -.263 (-1.069, .543)
21 -.120 (-.859, .619) -.082 (-.905, .741) -.251 (-1.068, .566) -.142 (-1.059, .775)
22 .014 (-.699, .727) .006 (-.802, .814) .008 (-.943, .959) -.016 (-.971, .939)
23 .090 (-.625, .805) .084 (-.725, .893) .207 (-.653, 1.067) .146 (-.769, 1.061)
24 .135 (-.571, .841) .098 (-.702, .898) .275 (-.511, 1.061) .155 (-.754, 1.064)
25 .156 (-.559, .871) .102 (-.704, .908) .315 (-.412, 1.042) .176 (-.720, 1.072)
26 .331 (-.435, 1.097) .198 (-.633, 1.029) .460 (.062, .858) .317 (-.434, 1.068)
27 -.066 (-.801, .669) .009 (-.814, .832) -.140 (-1.051, .771) .020 (-.935, .975)
28 .031 (-.667, .729) .070 (-.728, .868) .078 (-.861, 1.017) .124 (-.801, 1.049)
29 .155 ( -.576, .886) .180 (-.649, 1.009) .314 (-.415, 1.043) .284 (-.516, 1.084)
30 .205 (-.505, .915) .203 (-.603, 1.009) .372 (-.245, .989) .301 (-.469, 1.071)
31 .471 (-.354, 1.296) .372 (-.508, 1.252) .497 (.119, .875) .441 (-.122, 1.004)
32 .274 (-.455, 1.003) .360 (-.473, 1.193) .416 (-.092, .924) .427 (-.179, 1.033)
33 .573 (-.278, 1.424) .568 (-.343, 1.479) .536 (.048, 1.024) .552 (-.087, 1.191)
34 .574 (-.284, 1.432) .572 (-.349, 1.493) .536 (.048, 1.024) .552 (-.087, 1.191)
35 .951 (-.088, 1.990) .841 (-.198, 1.880) .874 (-.128, 1.876) .775 (-.158, 1.708)
36 .888 (-.078, 1.854) .841 (-.153, 1.835) .851 (-.135, 1.837) .823 (-.149, 1.795)
37 1.048 (.013, 2.083) 1.038 (-.020, 2.096) 1.022 (-.066, 2.110) 1.029 (-.053, 2.111)
38 1.173 (.056, 2.290) 1.090 (-.017, 2.197) 1.202 (.050, 2.354) 1.103 (-.014, 2.220)
39 1.214 (.046, 2.382) 1.196 (.030, 2.362) 1.174 (.025, 2.323) 1.168 (.039, 2.297)
40 1.430 (.183, 2.677) 1.466 (.216, 2.716) 1.394 (.179, 2.609) 1.435 (.234, 2.636)
41 1.421 (.145, 2.697) 1.462 (.188, 2.736) 1.394 (.179, 2.609) 1.435 (.234, 2.636)
42 1.376 (.171, 2.581) 1.426 (.195, 2.657) 1.394 (.179, 2.609) 1.435 (.234, 2.636)
43 1.365 (.185, 2.545) 1.407 (.219, 2.595) 1.394 (.179, 2.609) 1.435 (.234, 2.636)
44 1.341 (.198, 2.484) 1.399 (.221, 2.577) 1.394 (.179, 2.609) 1.435 (.234, 2.636)
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Table 7-Continued
Ability Estimates and Normal Approximated 95% Posterior Intervals of the Q-E Intelligence Test

Examinee

Marginal Bayesian BILOG
Prior-1 Prior-2 Prior-1 Prior-2

0, (Post. Interval) of (Post. Interval) of (Post. Interval) of (Post. Interval)
1 -1.801 (-3.038, -.564) -1.903 (-3.132, -.674) -1.801 (-3.018, -.560) -1.903 (-3.166, -.778)
2 -1.616 (-2.774, -.458) -1.674 (-2.795, -.553) -1.616 (-2.689, -.423) -1.674 (-2.750, -.598)
3 -1.506 (-2.635, -.377) -1.498 (-2.564, -.432) -1.506 (-2.434, -.294) -1.498 (-2.361, -.437)
4 -1.358 (-2.465, -.251) -1.344 (-2.387, -.301) -1.358 (-2.278, -.188) -1.344 (-2.228, -.338)
5 -1.202 (-2.296, -.108) -1.164 (-2.215, -.113) -1.202 (-2.071, -.037) -1.164 (-2.032, -.122)
6 -.988 (-2.009, .033) -1.002 (-2.013, .009) -.988 (-1.891, .069) -1.002 (-1.961, -.051)
7 -.765 (-1.671, .141) -.877 (-1.855, .101) -.765 (-1.715, .131) -.877 (-1.904, -.002)
8 -.782 (-1.723, .159) -.799 (-1.752, .154) -.782 (-1.516, .162) -.799 (-1.667, .121)
9 -.782 (-1.723, .159) -.799 (-1.752, .154) -.782 (-1.516, .162) -.799 (-1.667, .121)

10 -.615 (-1.405, .175) -.593 (-1.375, .189) -.615 (-1.241, .167) -.593 (-1.309, .161)
11 -.615 (-1.405, .175) -.593 (-1.375, .189) -.615 (-1.241, .167) -.593 (-1.309, .161)
12 -.473 (-1.151, .205) -.475 (-1.179, .229) -.473 (-1.078, .236) -.475 (-1.146, .178)
13 -.433 (-1.084, .218) -.461 (-1.137, .215) -.433 (-1.059, .273) -.461 (-1.141, .181)
14 -.449 (-1.147, .249) -.422 (-1.153, .309) -.449 (-1.055, .301) -.422 (-1.067, .255)
15 -.400 (-1.131, .331) -.361 (-1.139, .417) -.400 (-1.046, .358) -.361 (-1.054, .302)
16 -.327 (-1.062, .408) -.336 (-1.065, .393) -.327 (-1.037, .515) -.336 (-1.048, .368)
17 .159 (-.750, 1.068) -.015 (-.975, .945) .159 (-.518, 1.006) -.015 (-.970, .790)
18 -.148 (-1.075, .779) -.091 (-1.046, .864) -.148 (-.950, .814) -.091 (-.992, .740)
19 -.119 (-1.052, .814) -.126 (-1.061, .809) -.119 (-.848, .920) -.126 (-.991, .745)
20 -.070 (-1.017, .877) -.116 (-1.049, .817) -.070 (-.749, .971) -.116 (-.969, .795)
21 -.060 (-L016, .896) .009 (- .957..975) -.060 (-.903, .873) .009 (-.961, .811)
22 .143 (-.774, 1.060) .142 (-.783, 1.067) .143 (-.654, .996) .142 (-.833, .951)
23 .279 (-.525, 1.083) .262 (-.583, 1.107) .279 (-.431, 1.003) .262 (-.688, 1.018)
24 .341 (-.390, 1.072) .269 (-.568, 1.106) .341 (-.227, .981) .269 (-.650, 1.028)
25 .372 (-.320, 1.064) .300 (-.509, 1.109) .372 (-.180, .980) .300 (-.597, 1.041)
26 .509 (-.087, 1.105) .417 (-.247, 1.081) .509 (-.100, 1.162) .417 (-.347, 1.075)
27 .051 (-.905, 1.007) .149 (-.776, 1.074) .051 (-.743, .973) .149 (-.770, .986)
28 .191 (-.695, 1.077) .231 (-.633, 1.095) .191 (-.537, 1.007) .231 (-.639, 1.031)
29 .375 (-.317, 1.067) .367 (-.382, 1.116) .375 (-.158, .982) .367 (-.413, 1.065)
30 .401 (-.234, 1.036). .384 (-.326, 1.094) .401 (-.167, .981) .384 (-.380, 1.070)
31 .595 (-.099, 1.289) .522 (-.119, 1.163) .595 (-.136, 1.432) .522 (-.201, 1.215)
32 .462 (-.130, 1.054) .493 (-.179, 1.165) .462 (-.094, 1.070) .493 (-.219, 1.161)
33 .692 (-.143, 1.527) .662 (-.163, 1.487) .692 (-.134, 1.638) .662 ( -.183, 1.479)
34 .692 (-.143, 1.527) .662 (-.163, 1.487) .692 ( -.134, 1.638) .662 (-.183, 1.479)
35 1.110 (.016, 2.204) .957 (-.092, 2.006) 1.110 (.041, 2.099) .957 (-.140, 1.784)
36 1.079 (-.011, 2.169) .996 (-.070, 2.062) 1.079 (.033, 2.087) .996 (-.123, 1.841)
37 1.237 (.120, 2.354) 1.192 (.087, 2.297) 1.237 (.178, 2.310) 1.192 (.030, 2.178)
38 1.376 (.233, 2.519) 1.264 (.145, 2.383) 1.376 (.244, 2.424) 1.264 (.055, 2.219)
39 1.344 (.201, 2.487) 1.310 (.179, 2.441) 1.344 (.236, 2.412) 1.310 (.088, 2.276)
40 1.520 (.332, 2.708) 1.533 (.347, 2.719) 1.520 (.369, 2.701) 1.533 (.292, 2.668)
41 1.520 (.332, 2.708) 1.533 (.347, 2.719) 1.520 (.369, 2.701) 1.533 (.292, 2.668)
42 1.520 (.332, 2.708) 1.533 (.347, 2.719) 1.520 (.369, 2.701) 1.533 (.292, 2.668)
43 1.520 (.332, 2.708) 1.533 (.347, 2.719) 1.520 (.369, 2.701) 1.533 (.292, 2.668)
44 1.520 (.332, 2.708) 1.533 (.347, 2.719) 1.520 (.369, 2.701) 1.533 (.292, 2.668)
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Figure Captions

Figure 1. Plots of item parameter estimates (lambda = = &j, zeta = =

Figure 2. Magnitudes of posterior standard deviations of item parameter estimates.

Figure 3. Plots of ability estimates.

Figure 4. Magnitudes of posterior standard deviations of ability estimates.
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